Coverage for image_preprocessing/build_director.py : 0%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
import os from image_preprocessing.blur_manager import BlurManager from image_preprocessing.color_manager import ColorManager from image_preprocessing.face_manager import FaceDetector from image_preprocessing.pipeline_builder import PipelineBuilder from image_preprocessing.thresholding_manager import ThresholdingManager from hutts_utils.hutts_logger import logger from hutts_utils.pypath import correct_path
# Constants path to trained data for Shape Predictor. SHAPE_PREDICTOR_PATH = correct_path("{base_path}/trained_data/shape_predictor_face_landmarks.dat".format( base_path=os.path.abspath(os.path.dirname(__file__))))
class BuildDirector: """ The BuildDirector constructs the Pipeline using the PipelineBuilder """ @staticmethod def construct_text_extract_pipeline(preferences, identification_type): """ This function constructs the pipeline for text extraction. This includes building different managers with their specific parameters. These managers will be called within the pipeline when executed. Author(s): Nicolai van Niekerk and Marno Hermann Args: preferences (dict): User-specified techniques to use in pipeline. identification_type (string): Contains the type of identification, this is used to determine which techniques are used. Returns: :Pipeline (Constructed pipeline) """ builder = PipelineBuilder() # Use template matching to identify type here
if 'blur_method' in preferences: blur_method = preferences['blur_method'] elif identification_type == 'idcard': blur_method = 'gaussian' elif identification_type == 'idbook': blur_method = 'gaussian' elif identification_type == 'studentcard': blur_method = 'median' else: # Default blur_method = 'median'
if blur_method == 'median': blur_kernel_size = [3] else: if identification_type == 'idbook': blur_kernel_size = [(3, 3)] elif identification_type == 'idcard': blur_kernel_size = [(3, 3)] else: blur_kernel_size = [(3, 3)]
if 'threshold_method' in preferences: threshold_method = preferences['threshold_method'] elif identification_type == 'idcard': threshold_method = 'adaptive' elif identification_type == 'idbook': threshold_method = 'adaptive' elif identification_type == 'studentcard': threshold_method = 'adaptive' else: # Default threshold_method = 'adaptive'
if 'color' in preferences: color_extraction_type = 'extract' color = preferences['color'] elif identification_type == 'idcard': color_extraction_type = 'extract' color = 'red_blue' elif identification_type == 'idbook': color_extraction_type = 'extract' color = 'red_blue' elif identification_type == 'studentcard': color_extraction_type = 'extract' color = 'red' else: # Default color_extraction_type = 'extract' color = 'red'
logger.debug("Blur Method: " + blur_method) logger.debug("Kernel Size: " + str(blur_kernel_size)) logger.debug("ColorXType: " + color_extraction_type) logger.debug("Color: " + color) logger.debug("Threshold Method: " + threshold_method)
blur_manager = BlurManager(blur_method, blur_kernel_size) color_manager = ColorManager(color_extraction_type, color) threshold_manager = ThresholdingManager(threshold_method) face_detector = FaceDetector(SHAPE_PREDICTOR_PATH)
builder.set_blur_manager(blur_manager) builder.set_color_manager(color_manager) builder.set_face_detector(face_detector) builder.set_threshold_manager(threshold_manager)
return builder.get_result()
@staticmethod def construct_face_extract_pipeline(): """ This function constructs the pipeline for face extraction. This includes building different managers with their specific parameters. These managers will be called within the pipeline when executed. Author(s): Stephan Nell Returns: :Pipeline (Constructed pipeline) """ logger.debug("Shape Predictor path: " + SHAPE_PREDICTOR_PATH) builder = PipelineBuilder()
face_detector = FaceDetector(SHAPE_PREDICTOR_PATH) builder.set_face_detector(face_detector)
return builder.get_result() |