Coverage for image_preprocessing/pipeline.py : 0%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
import cv2 import os from hutts_utils.hutts_logger import logger DESKTOP = os.path.join(os.path.join(os.path.expanduser('~')), 'Desktop')
class Pipeline: """ The Pipeline will perform all necessary processing on the image and is built by the PipelineBuilder. """ def __init__(self, blur_manager=None, color_manager=None, face_detector=None, threshold_manager=None): """ Initialize Pipeline with parameters passed from the Builder. """ self.blur_manager = blur_manager self.color_manager = color_manager self.face_detector = face_detector self.threshold_manager = threshold_manager
def process_text_extraction(self, useIO, image, remove_face=False): """ This function applies all the processing needed to extract text from a image. Author(s): Nicolai van Niekerk Args: useIO (boolean): Whether or not to write images to disk image (:obj:'OpenCV image'): Image to which processing should be applied to. remove_face :boolean: If the remove face flag is set to true extra processes will be activated during the pre-processing phase to remove the face from the image. Returns: image: The processed image.
"""
# Remove face from image. logger.info("Removing face: " + str(remove_face)) if remove_face: logger.info("REMOVING FACE...") image = self.face_detector.blur_face(image) if useIO: cv2.imwrite(DESKTOP + "/output/4.png", image)
# Blur image. logger.info("Blurring image...") blur_image = self.blur_manager.apply(image) if useIO: cv2.imwrite(DESKTOP + "/output/5.png", blur_image)
# Apply channel image_processing, tophat, blackhat or histogram equalization. logger.info("Removing color channel...") color_image = self.color_manager.apply(blur_image) if useIO: cv2.imwrite(DESKTOP + "/output/6.png", color_image)
# Convert image to grayscale. logger.info("Converting image to grayscale...") gray_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2GRAY) if useIO: cv2.imwrite(DESKTOP + "/output/7.png", gray_image)
# Apply thresholding. logger.info("Applying thresholding...") thresholded_image = self.threshold_manager.apply(gray_image) if useIO: cv2.imwrite(DESKTOP + "/output/8.png", thresholded_image)
return thresholded_image
def process_face_extraction(self, image): """ This function applies all the processing needed to extract a face from a image. Author(s): Stephan Nell Args: image (:obj:'OpenCV image'): Image to which processing should be applied to. Returns: image: The processed image.
""" logger.info("Extracting face from image") extracted_face = self.face_detector.extract_face(image)
return extracted_face |