Coverage for image_processing/simplification_manager.py : 39%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
import cv2 import os import imutils import numpy as np from imutils.perspective import four_point_transform from hutts_utils.hutts_logger import logger
DESKTOP = os.path.join(os.path.join(os.path.expanduser('~')), 'Desktop') # The minimum contour area must be to be transformed. CONTOUR_AREA_THRESHOLD = 150000
class SimplificationManager: """ The Simplification manger is used to remove unwanted content in an image thus simplifying process like OCR and facial comparisons. """
def perspectiveTransformation(self, image, use_io): """ The perspective transformation takes the image passed and applies edge detection and a function to detect the contours of a identification document. If contours of an identification document is detected the image is converted from a non-perspective view to an perspective view. Author(s): Stephan Nell, Nicolai van Niekerk Args: image (:obj:'OpenCV image'): Image containing a identification document use_io (boolean): Whether or not to write images to disk Returns: obj:'OpenCV image': Returns as warped image where just the identification document is present and the identification document is now in a perspective view. Raises: TypeError: If a parameter is passed that is not of type Numpy array. """ 'Bad type for arg image - expected image in numpy array. Received type "%s".' % type(image).__name__ )
cv2.imwrite(DESKTOP + "/output/1.png", edged) # Used to prevent false positive detection for c in contours: peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.02 * peri, True)
if len(approx) == 4: screen_contours = approx break
cv2.drawContours(image, [screen_contours], -1, (0, 255, 0), 2) if use_io: cv2.imwrite(DESKTOP + "/output/2.png", image) logger.debug('Performing four point simplification') warped = four_point_transform(orig, screen_contours.reshape(4, 2) * ratio) |